
UNIVERSITY OF TARTU 

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE 

Institute of Computer Science 

Computer Science Speciality 

Viktor Massalõgin 

Visual Lambda Calculus 
Master thesis (20 AP) 

Supervisor: Prof. Varmo Vene 

Author: Viktor Massalõgin  “…..“ May 2008 

Supervisor: Prof. Varmo Vene  “…..“ May 2008 

Allowed to defense 

Professor  “…..“ May 2008 

TARTU 2008 
 



2 

 

Contents 

Introduction ............................................................................................................. 3 

1. Lambda calculus basics ........................................................................................ 4 

2. Existing visualizations of lambda calculus ........................................................... 9 

2.1. Programming with Visual Expressions (VEX) by Wayne Citrin ............. 10 

2.2. A Graphical Notation for the Lambda Calculus by Dave Keenan ........... 11 

2.3. Lambda Animator by Mike Thyer ........................................................... 11 

2.4. Puzzle game Alligator Eggs by Bret Victor ............................................. 13 

2.5. Motivation for a new notation ................................................................. 13 

3. Bubble notation ................................................................................................. 14 

4. Interface ............................................................................................................. 19 

5. Implementation .................................................................................................. 22 

6. Student experiments .......................................................................................... 26 

7. Conclusion ......................................................................................................... 27 

7.1. Summary ................................................................................................. 27 

7.2. Future work ............................................................................................. 27 

Resümee (in Estonian) ........................................................................................... 30 

References .............................................................................................................. 32 

Appendix ............................................................................................................... 33 

 

  



3 

 

Introduction 

The history of visual programming languages (VPL) starts in 1963 with the 

Sketchpad system by Ivan Sutherland [1]. Over time VPL gained in importance in 

human-computer interaction study, especially for education. This thesis doesn’t 

aim to prove the importance of VPL. Just note that the main argument of such 

proofs is the primacy of the perception of images over the perception of text [1], 

thus a graphical representation may successfully supplement or even substitute a 

textual statement. 

This thesis is devoted to the development of a visual notation for lambda 

calculus expressions and a VPL environment based on this notation. We believe 

that lambda calculus is especially suited for visualization purposes. The simplicity 

of lambda calculus allows defining simple transparent semantics for notations. It 

also allows keeping notations purely graphical (meaning that no literal labeling is 

needed). At the same time such a visual language (along with lambda calculus) is 

powerful enough to denote Boolean operations, numbers, lists, recursion etc [2]. 

The main requirements for the developed notation and the visual 

programming environment are an exact and clear representation of lambda 

expressions and an intuitive interface for their manipulation respectively. Such an 

environment may be used as a learning aid for teaching lambda calculus, as a 

mental game for children or as an assistant tool for research. 

This thesis is organized as follows. Section 1 introduces and reviews some 

basic definitions of lambda calculus with let-expressions and lazy evaluation. This 

section may be skipped by an experienced reader. Section 2 gives an overview of 

four existing graphical notations for lambda calculus and describes their benefits 

and drawbacks. Section 3 specifies the bubble notation proposed by the author. 

This notation combines the benefits of the notations cited above. Section 4 

describes the user interface of the Visual Lambda environment prototype based on 

the bubble notation. Section 5 gives the main aspects of the implementation of the 

environment in the Python programming language. Section 6 reports the results of 

lessons with two students. The lessons consisted of an introduction to the lambda 

calculus and the solving of tasks (both using the Visual Lambda environment). 

Section 7 presents some conclusions and thoughts on future work. Visual Lambda 

is the open source project licensed under GPLv3 license. A copy of the project 

source (as of 27.05.2008) is available online and on the attached CD.  
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1. Lambda calculus basics 

This section is a short and informal description of lambda calculus. For more 

complete description we recommend any of the introductions to lambda calculus 

such as [2] or [3]. 

Lambda calculus theory is tightly bound to the notion of function. Consider a 

definition of a function. Traditionally we specify function arguments by the side of 

a name of a function being defined. As an example, the definition of the two-

argument function LENGTH can be given as: 

LENGTH(x ,y ) := x2+y2 

The lambda syntax allows uniting arguments with the function body. For 

example, 

λx y . x2+y2 

defines a vector length function without being bound to any name. The following 

notation 

LENGTH ≡ λx y . x2+y2 

denotes that LENGTH and λx y . x2+y2 are synonyms. 

An important point is that every function in lambda calculus takes its 

arguments one by one. As an example, consider the evaluation of the function 

LENGTH: 

LENGTH 5 12 ≡ (λx y . x2+y2) 5 12 
 
 

(λy . 52+y2) 12 
 
 

52+122 = 13 

This implies that a result of an evaluation of a function application may be 

another function. Thus we may define the one-argument function 

DOUBLE ≡ MULT 2 

where MULT is the two-argument function λx y . x ⋅ y . 

A function may also take another function as an argument. For example, we 

use the function λf x . f x x  to define one-argument functions SQR and DOUBLE: 
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SQR ≡ ( λf x . f x x )  MULT  

DOUBLE ≡ ( λf x . f x x )  PLUS 

Indeed: 

( λf x . f x x )  PLUS 
 
  

λx .  PLUS x x  

Now a bit more formally. The lambda expressions (or lambda terms) are 

defined by the following grammar: 

E  ::= V  |  λV .E  |  E 1 E 2  

where V  is any identifier. An expression λV .E  is called an abstraction and 

corresponds to a function, where identifier V  is an argument and E  is called a 

body of abstraction. An expression E 1 E 2  is called an application of argument E 2  

to the function E 1 . 

The following abbreviation is accepted as syntactic sugar: 

λf . λx . f x x  ≡ λf x . f x x  

Application is left associative, that is: 

 ( ( f x ) y ) z  ≡ f x y z  

A variable in a lambda expression can be either free or bound. A bound 

variable is associated with some lambda within the expression. For example, x  is 

bound and f  is free in λx . f x x . 

It is allowed to change name of bound variables in an expression if the 

renaming does not make a collision of variables. Such a renaming is called 

α-conversion. For example, expressions λa . b ( a c )  and λd . b ( d c )  are equivalent.  

An application F A  is a redex if F  is some abstraction. In this case, a 

β-reduction corresponds to calling the function F  with the argument A . A 

β-reduction of a redex ( λx . E )A  involves a substitution of all occurrences of x  in 

E  by A . α-conversions may be needed before β-reduction for avoiding collision of 

variables. For example, the expression λb . ( λa b . a ( a b ) ) ( λa . b a )  is reduced as 

follows (redexes being reduced are underlined): 
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 λb . ( λa b . a ( a b ) ) ( λa . b a )   

 λb . ( λc d . c ( c d ) ) ( λa . b a )   

 λb . λd . ( λa . b a ) ( ( λa . b a ) d )  … 

The reduction of an expression may be continued as long as the expression 

contains redexes. A normal form is an expression containing no redexes. An order 

of reduction of redexes is determined by a reduction strategy. Normal order 

reduction reduces the leftmost outermost (not contained in any other redex) redex 

first. Applicative order reduction reduces the leftmost innermost (not containing 

any other redex) redex first. Either of strategies has a weakness. Normal order 

strategy may cause repeated evaluations: 

 ( λx . PLUS x x ) ( FACTORIAL 4)     

 PLUS ( FACTORIAL 4) ( FACTORIAL 4)    …  

 PLUS 24 ( FACTORIAL 4)    …  

 PLUS 24 24    … 

Applicative order strategy may cause a long (or even infinite) unnecessary 

evaluation: 

 ( λx . y ) ( FACTORIAL 4)    …  

 ( λx . y ) 24    

 y  

Lazy evaluation eliminates these weaknesses. We supplement pure lambda 

calculus with a let-expression let x= A  in E  and redefine reduction rule as 

follows: 

( λx . E )A   let x= A  in E  

It allows to not evaluate A  if E  does not depend on x , or to use a value of A  for 

all occurrences of x  in E . A substitution of one occurrence of x  by a value of A  is 

called a dereferencing. As an example, consider the following reduction: 

 let x= λz . z  in x x     

 let x= λz . z  in ( λz . z ) x     
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 let x= λz . z  in ( λz . z ) ( λz . z )     

 ( λz . z ) ( λz . z )  

Note that a let-expression may be dropped as garbage if x  no longer appears in E . 

Lazy evaluation is described in more details in [3]. As an example, we consider the 

reduction of the expression ( λx . x x ) ( ( λy z . y z ) ( λw .w ) )  without going into 

details. Figure 1 illustrates the reduction in standard notation and in the usual 

graph form. 

Obviously, a core of each lambda expression is a graph structure. Each 

textual notation representing lambda expressions has a weakness. For instance, 

using of named variables in standard notation is redundant and causes 

intermediate α-conversions. Expressions written using de Bruijn indexes [4] are 

invariant with respect to α-conversion but the same bound variables may be 

represented by different numbers, which makes the rules of reduction more 

complicated. In the next section we describe some graphical notations for lambda 

expressions and determine their benefits and drawbacks. 
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Figure 1. Lazy evaluation. 
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2. Existing visualizations of lambda calculus 

Martin Erwig [5] proposes a general approach to visual languages. He presents a 

framework based on a rather general notion of abstract visual syntax and defines 

an abstract visual syntax of a visual language notation as a set of directed labeled 

graphs, where nodes represent visual objects and edges represent relationships 

between objects. In this section we describe four existing approaches to visualize 

lambda expressions, compare them in the framework of abstract visual syntax and 

note their benefits and drawbacks. 

First consider the expression λf . ( λx . f ( x x ) ) ( λx . f ( x x ) ) .  Figure 2 shows 

its structure. We can see that there are three types of nodes (application node, 

lambda node and variable node) and two types of edges such as tree edges (parent-

child) and binding edges (variable-lambda). Erwig considers such a structure as the 

abstract syntax graph of a lambda calculus visual notation. 

Figure 2. The structure of λf . ( λx . f ( x x ) ) ( λx . f ( x x ) ) . 

There exist a lot of approaches to visualize lambda expressions. We have 

chosen the following four as the most mature and interesting: VEX by Wayne 

Citrin [6], a Graphical Notation by Dave Keenan [7], Lambda Animator by Mike 

Thyer [8] and a puzzle game Alligator Eggs by Bret Victor [9]. Corresponding 

representations of the expression above are shown in Figure 3. 
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Figure 3. λf . ( λx . f ( x x ) ) ( λx . f ( x x ) )  in notations of  

(a) Wayne Citrin, (b) Dave Keenan, (c) Mike Thyer and (d) Bret Victor. 

2.1. Programming with Visual Expressions (VEX) by Wayne Citrin 

This notation represents a variable node as an empty circle. A lambda node is 

represented as a circle and in addition an internally tangent circle (a parameter of 

an abstraction). An application node is represented as an arrow between two 

externally tangent circles (a function circle and an argument circle). Note that the 

notation does not differentiate application order ( f ( x x )  or ( f x ) x ). So application 

arrows have to be numbered according to priority. Hence the notation is not 

purely visual. 

The notation uses an appropriate nested syntax (a body of abstraction is 

inside a lambda circle), which allows not to encumber a representation with tree 

edges. Binding edges are drawn as lines that connect a variable circle and an 

abstraction parameter circle. Note also that the notation provides a representation 
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of let-expressions. For example the expression λ f . let y= λ x . f ( x x )  in y y  is 

drawn as 

 

2.2. A Graphical Notation for the Lambda Calculus by Dave Keenan 

This purely visual notation also uses a nested syntax. However tree edges of 

application are mixed up with binding edges, which rather encumbers the 

representation. The most important advantage of this notation is that it allows for 

smooth animations representing the reduction of an expression. The smoothly 

animated reduction allows easier following the transformation of an expression. 

Figure 4 shows the reduction 

( λ x y . x ) ( λ z . z )    λ y z . z   

Regrettably, this notation does not provide a representation of let-

expressions. 

2.3. Lambda Animator by Mike Thyer 

The Lambda Animator represents the expressions in tree form. So the tree edges 

are drawn. Binding edges are represented by numbering the lambda and variable 

nodes. The notation very nearly reproduces the traditional tree notation of lambda 

expressions. Only this notation is implemented (in Java) and available online [8], 

which is the main advantage. The notation also provides a representation of let-

expressions. Unfortunately, the “animation” of β-reductions is not smooth and 

thus it is not easy to follow the transformations. 

12
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Figure 4. Smoothly animated reduction by Dave Keenan. 
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2.4. Puzzle game Alligator Eggs by Bret Victor 

This is a paper game, which is designed for children. A hungry (colored) alligator 

represents a lambda node, an egg represents a variable node and an application 

node is represented as two alligator families next to each other. Old (white) 

alligators stand for parenthesis and determine the order of applications. This 

notation allows rather concise representations, which are suited to children. 

Expressions are represented in tree form but tree edges are not drawn. The 

felicitous feature of this notation is the using of color: a binding is represented as 

the same colored egg and alligator, which avoids unnecessary lines and simplifies a 

representation. β-reduction is denoted by eating and hatching out. Let-expressions 

are not provided. 

2.5. Motivation for a new notation 

We saw that none of the considered notations combines all of the advantages 

determined above (such as the providing of let-expressions, smooth animated 

reductions, nested and colored syntax etc). It motivated us to develop the bubble 

notation, which is specified in the next section. As an example, Figure 5 shows the 

same expression λf . ( λx . f ( x x ) ) ( λx . f ( x x ) )  in the bubble notation. 

 

Figure 5. λf . ( λx . f ( x x ) ) ( λx . f ( x x ) )  in the bubble notation. 
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3. Bubble notation 

The implemented programming environment Visual Lambda uses the bubble 

notation for representation of expressions and reductions of lambda calculus. In 

this section we describe the basic rules of the notation.  

The bubble notation represents λ-expressions as two-dimensional structures 

of rings. These rings are called bubbles. Each bubble has a specific color. Bubbles 

may be grouped together. A bubble may have a group of bubbles inside.  

Each bubble represents a variable or an abstraction. So we have two types of 

bubbles: variable bubble and lambda bubble. A variable is represented as an empty 

bubble. A lambda bubble λ a  of an abstraction λ a . E  has the bubbles inside, 

which represent E . Each bubble of variable a  in E  has the same color as the 

corresponding lambda bubble. Variable bubbles associated with different lambdas 

always have different colors. Bubbles of free variables are white. So the expressions 

λ x y . x  and λ x y . y  are drawn as 

  

An application is represented as partial overlapping bubbles. The bubble of 

function is over the bubble of argument. The expressions f x  and λ x . x x  are 

represented as 

 

 

Figure 6 illustrates composition of applications. 

λx λy x λx λy y

f x λx x x
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f ( g x )  ( f x ) y  f ( g x ) y ( t x z )  

 
 

 

Figure 6. Composition of applications. 

The following figure illustrates the expression 

( λ mn f x . n f (mf x ) ) ( λ f x . f ( f x ) ) ( λ f x . f ( f ( f x ) ) ) ≡ PLUS 2 3 

 

Note that colors of the bubbles in a closed expression (an expression without 

free variables) have the same hue. It makes the recognition of a structure of an 

expression easier. 

The bubble notation also allows representing let-expressions. Consider an 

expression let x= E ’  in E , where the let-bound variable x  appears in E  several 

times. Then all occurrences of x  in E  are represented by the same colored 

duplicates of the representation of E ’ . So the expression  

f g x f

x

y
f

g

y

t
x

z

x
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λf x . let h = λg . g ( g f )  in h ( h x )  

is drawn as 

 

The copy of λg . g ( g f )  changes its color after dereferencing. So that the 

expression  

λf x . let h = λg . g ( g f )  in ( λg . g ( g f ) ) ( h x )  

is drawn as 

 

Further extensions of the bubble notation concern animation and interaction. 

So a β-reduction of a λ-expression is shown as a continuous animation. It allows 

easier following a modification of the expression. Consider a β-reduction of the 

redex ( λ x . E )E ’ . We shall use the metaphor of eating. Eating act includes three 

phases: (1) the eaten bubbles (the bubbles of E ’ ) are moving under the eating 

bubble (the bubble λ x ) so that the eating bubble covers them, at the same time 

the copies of the eaten bubbles are appearing inside the bubbles of the lambda-

bound variables (the bubbles x  within E ); (2) hiding of the eating bubble λ x  and 

the associated bubbles x  (their transparency grows to 100%); (3) rearranging of 
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remained bubbles according to resulting expression. Figure 7 shows phases of the 

reduction of the expression  

λf . ( λg x . g ( g x ) ) ( λh y . h ( h y ) ) f . 

   

   

Figure 7. Eating act. 

It should be noted that a part of the nearest eaten bubble is seen inside the 

lambda-bound variable bubbles even before the eating. It signifies that the eating 

is possible: 
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A selection of a sub-expression occurs by a simplest interaction: mouse 

picking results in the red highlighting of some bubbles. A highlighted bubble 

corresponds to selection of a variable or an abstraction. Multiple bubble 

highlighting corresponds to selection of an application.  

Now note that if we select some sub-expression within the let-bound variable 

bubble y  then the bubbles of the same sub-expressions within other let-bound 

variable bubbles y  get orange highlighting. The expression  

λ f . let y= λ x . f ( x x )  in y y   

is drawn below. The application x x  within the second let-bound variable y  is 

selected. 

 

The orange highlighting also allows distinguishing the expressions  

λ x . let y= x x  in y y  and λ x . x x ( x x ) : 
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Quick reduction mode Q 

Add a new figure (free variable)  V 

Insert an application before the selected bubbles A,  Insert 

Insert an application after the selected bubbles Ctrl+A, Ctrl+Insert 

Insert a lambda bubble L,  Alt+Insert 

Delete the selected bubbles Delete 

Delete the selected figure D 

Duplicate the selected figure C 

Figure 9. Right toolbar. 

Right-click on a bubble tries to bind a clicked variable/lambda bubble with a 

selected lambda/variable bubble.  

Dropping a figure to another figure produces an application. More properly, 

dropping a figure A  to a sub-expression B  of another figure substitutes B  for an 

application A B . The bubbles of sub-expression B  are highlighted with dark red 

before dropping.  

The Input item command on the left toolbar requests for an expression in 

console and creates a corresponding figure. An exemplary input is  

let a=2 in MULT a a 

All the accepted synonyms of lambda expressions are defined in Figure 10. It 

is possible to add synonyms to the file library.txt in the working directory. 

The Play button from the bottom toolbar (or the Enter key) performs a 

reduction step of a selected figure. A reduction step contains a visible reduction (a 

β-reduction or a dereferencing) and invisible reductions of let-expressions when 

required (arranging and garbage collection). Ctrl+Enter starts a nonstop 

reduction. Undo and Redo buttons (Ctrl+Z and Ctrl+Y) allow returning a figure 

to one of the previous states. 
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Combinators 

I ≡ λx . x  
K ≡ λx y . x  
S ≡ λx y z . x z ( y z )  
W ≡ λx . x x  
Y ≡ λf . ( λx . f ( x x ) ) ( λx . f ( x x ) )  
OO ≡ ( λx y . y ( x x y ) ) ( λx y . y ( x x y ) )  

Logic 

T ≡ λx y . x  
F ≡ λx y . y  
NOT ≡ λp . p F T 
AND ≡ λp q . p q F 
OR ≡ λp q . p Tq  
COND ≡ λp x y . p x y  

Pairs 

FST ≡ λp . p T 
SND ≡ λp . p F 
PAIR ≡ , ≡ λa b f . f a b  

Arithmetic 

ISZERO ≡ λn . n ( λx . F) T 
SUCC ≡ λn f x . f ( n f x )  
PLUS ≡ + ≡ λmn f x . n f (m f x )  
MULT ≡ * ≡ λmn f .m (n f )  
POW ≡ λmn . nm  
PRED ≡ λn f x . n ( λg h . h ( g f ) ) ( λu . x ) I 

FACT ≡ Y( λf n . ( ISZEROn ) 1 

 ( MULT( f ( PREDn ) )n ) )  

0 ≡ λf x . x  
1 ≡ λf x . f x  
2 ≡ λf x . f ( f x )  
3 ≡ λf x . f ( f ( f x ) )  
etc 

Lists 

NIL ≡ λz . z  
CONS ≡ : ≡ λx y .  PAIR F ( PAIRx y )  
NULL ≡ λz . z T 
HEAD ≡ λz . FST ( SNDz )  
TAIL ≡ λz . SND ( SNDz )  

Figure 10. Accepted synonyms for expression input. 

The left toolbar shows a current reduction mode, such as a reduction strategy 

(normal or applicative), a calculus mode (pure or lazy lambda calculus) and the 

bounds of reduction (within a selection only or the whole figure). The quick 

reduction mode (the finger cursor) allows selection and then reduction within 

selection by a single click. 

Besides figures, a workspace may contain text labels. Input item command 

adds a text label if the inputted text is quoted.  

A workspace may be saved and loaded from an XML file (Ctrl+S, Ctrl+O). 

The name of the file is requested in console. 

Some basic options of the environment (such as speed of eating, default 

workspace or the size of text) may be changed in configuration file config.cfg. 
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5. Implementation 

The prototype of Visual Lambda environment is written in the Python 

programming language (version 2.5) [10] using the PyGame library (version 1.8) 

[11]. Python allows easy writing, reading and rewriting code. PyGame is the most 

commonly used Python library for creating interactive graphics programs. Next we 

describe the main modules and classes of the environment program. 

Manipulation of lambda expressions is realized in module let.py. Modules 

let.py, library.py and lambdaparser.py may be used as a console evaluator of 

lambda expressions. The Library class allows defining the synonyms. The Parser 

class admits of parsing lambda expressions including let-expressions and synonyms, 

for example ‘let a=2 in MULT a a’. Module let.py allows step-by-step reduction of 

an expression according to selected reduction strategy. This module contains 

classes Variable, Abstraction, Let, Application and the base class Expression, 

which implement corresponding constructions of lambda expressions. Neither the 

variable nor the abstraction class contain a string attribute for an identifier. The 

module refnames.py is used for representing the identifiers. This module keeps a 

dictionary {Abstraction: identifier}. If we need to represent some new bound 

variable, a new pair (Abstraction: identifier) is added into the dictionary. 

Identifiers are added in order 'a','b',..'z','aa','ab',.. 

The rest of modules realize the graphical representation and the interface of 

the environment. We use the class Bubble, which specifies a bubble size and 

position. Thus we attach a Bubble object to each Variable and Abstraction object. 

Each variable or abstraction node may correspond to more than one bubble if this 

node is reached through some let-bound variable. Therefore each node has a 

dictionary {key: Bubble}, where key is a tuple (var1,var2,var3,..) of involved let-

bound Variable objects. We use an object of class Noke, which contains a pair 

(Node, key), as a pointer to some bubble of a figure. Figure 11 shows the tree and 

the figure of the expression λ a . let b= λ c . a ( c c )  in b b . One of the bubbles c  is 

selected. 
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Figure 11. Noke pointer to a bubble. 

 

Figure 12. A sequence of transformation matrices. 
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In case of a variable or an abstraction takes part in some application then the 

corresponding Bubble object refers to a Group object. Each group of bubbles is 

built in own space and has a bounding ring as an attribute. The groups are nested 

by transformation matrices. Figure 12 shows the figure and the tree of the 

expression λ a . a ( λ b . b b )  and the corresponding sequence of transformations used 

in drawing the variable bubble b . 

The radiuses of bubbles in each group are determined iteratively. Each 

iteration step makes a correction of a bubble radius if the neighbor bubbles do not 

fit around it. Figure 13 shows a step of building a group a a ( a a a a a ). The radius 

of the middle bubble has been enlarged. 

 

Figure 13. A step of iterative building a group. 

Each Figure object has a position on a workspace. A Figure object also keeps 

a history of an expression (copies of previous expressions without Bubbles) and a 

ColorSpace object. Similarly to the module refnames.py, a ColorSpace object 

associates each abstraction node of the figure with a representation color. The class 

ColorSpace uses the HSV color model [12] for grouping colors by hue (colors of 

bubbles in closed expressions differ in lightness only). Note that the function 

log2(2n+1) is used to determine a hue value for a new group. This function allows 

quite uniform distribution of any number of groups in color space. Figure 14 shows 

an arrangement of nine groups in color space. The same function is used for 

determining a lightness value for a new bubble within a group. 
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6. Student experiments 

We have tested the Visual Lambda environment prototype in some experiments 

with students. The aim of the experiments was to explore the possibilities of the 

environment and the bubble notation.  

For the first experiment we have chosen a 14-year-old student. The 

experiment lasted one hour with a short break. First the notions of functional and 

imperative programming languages and their applications were given for 

motivation. Lambda calculus was introduced as the basis for functional 

programming. Further the bubble notation rules were explained. The following 

terms were using: a bubble, a figure, an eating bubble, a bearing bubble, eaten 

bubbles, an eating act etc. The standard lambda notation was not mentioned. 

Then the basic figures (such as λa . a , λa b . a , λa b . b  etc) and their 

combinations were considered. The figures λa b . a , λa b . b  were associated with 

the True and False values. The operator Not was also considered. At the same 

time the interface of the environment was explained and some tasks were given, 

such as to predict a result of some eating, or to construct a copy of some given 

figure. 

There was a task to construct such a figure X  that XA   A (AA )  for each 

A . The student found the answer X  ≡ λa . a ( a a )  quickly. Then a figure 

λa . aAB  was associated with a pair of A  and B . A task to construct such a 

figure X  that ( λa . aAB )X   A  was given. The student was able to find the 

answer X  ≡ λa b . a . However, the task to solve X ( λa . aAB )   A  turned out 

to be too hard (X  ≡ λp . p ( λa b . a ) ). 

For the second experiment we have chosen a graduated in informatics 

student. The result was also not delightful. The student was able to solve the task 

X ( λa . aA B )   A , but the task X ( λa . aAB )    λa . aBA  was too difficult. 

It is clear that the two experiments are not enough for a valid final 

conclusion. However it shows that the interface of the environment is not intuitive 

enough and may prevent from directing attention to a task. Further experiments 

are needed before conclusions about the bubble notation can be drawn. For 

example, an experiment in a lecture on lambda calculus might compare conceiving 

of lambda calculus using the bubble notation and in the usual way. Experiments 

with modifications of the bubble notation might discover a better variant of the 

notation.  
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7. Conclusion  

7.1. Summary 

This work aimed to develop a visual notation, which represents lambda expressions 

as clearly as possible, and to implement a visual programming language 

environment based on this notation, which allows intuitive manipulation of lambda 

expressions. 

Four existing approaches to visualize lambda expressions have been 

considered during development of the notation. The following features of the 

considered notations have been accepted as advantageous: (1) nested syntax 

(which allows representing the tree structures omitting tree edges); (2) using of 

color (allows representing the bindings without using identifiers, numbers or 

edges); (3) smoothly animated reductions (helps to follow transformations of 

expressions); (4) possibility to represent let-expressions and (5) a notation should 

be easily implementable. The bubble notation proposed by the author combines 

the features above. 

The implemented Visual Lambda environment prototype allows for the 

construction and manipulation of figures, which represent lambda expressions. The 

environment has a graphical interface combined with a console. The mouse allows 

zooming, dragging figures, dropping one figure to another (producing an 

application), picking a redex for reduction etc. The toolbars allows construction of 

figures, reducing, returning figures to previous states, changing a reduction 

strategy, saving and loading workspaces etc. The environment was tested in 

experiments with students. The experiments had showed that the environment 

interface is not intuitive enough and needs to be improved. 

The Visual Lambda is an open source project and is available under the 

GPLv3 license [13] for all interested in lambda calculus at address 

http://code.google.com/p/visual-lambda/. A copy of the project sources (as of 

27.05.2008) is also available on the attached CD. 

7.2. Future work 

The Visual Lambda environment permits considerable further improvement and 

modifications. Let us note some potential features. 

Smoother construction and manipulation of figures might make it easier to 

follow transformations. In particular, one could implement smooth transformations 
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for the undo and redo commands, the smooth appending and removing of bubbles 

to a figure and the smooth changing of colors by dereferencing. 

The possibility to substitute some bubble figures for other objects in the 

manner of synonyms might simplify some compound figures. As an example, 

Figure 15.a shows a possible representation of the expression  

FACT 3 ≡ Y( λf n . ( ISZEROn ) 1( MULT( f ( PREDn ) )n ) ) 3 

It also may motivate to solve the task X ( λa . aA B )   A  described in the 

previous section if we substitute A  and B  for some images (Figure 15.b). 

 

Figure 15. Synonyms in bubble notation. 

Following potential features concern the bubble notation. One of the main 

drawbacks is that the notation does not differentiate free variables (all of them are 

represented as white bubbles). A more correct notation, for example, might assign 

different whitish colors to different free variables. 

A more proper notation of let-expressions has emerged during writing this 

thesis. The notation may be implemented in the future and is described below. 

Each let expression let x= A  in E  is represented in the same way as a redex 

( λx . E )A . Then a dereferencing is represented as a kind of threading. For 

example the dereferencing let x= λa . a  in x x    let x= λa . a  in ( λa . a ) x  is 

represented as: 

(a) (b)
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An advantage of this notation is that other reduction rules, such as assoc, lift 

and garbage [3], become visible. Figure 16 shows the corresponding representations. 

 

let x= let y= M in A  in E    let y= M in let x= A  in E  

 

( let x= M  in A )N    let x= M in AN  

 

 let x= M in A  A  if x is not free variable of A  

Figure 16. Representations of reductions in the alternative notation. 
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Visuaalne lambda arvutus 

Magistritöö (20 AP) 

Viktor Massalõgin 

Resümee 

Töö eesmärgiks oli disainida visuaalne esitus lambda-arvutusele ja selle alusel 

realiseerida visuaalse programmeerimiskeele keskkond. Põhieelduseks oli, et 

lambda-arvutuse reeglite lihtsus lubab arendada visuaalse keskkonna, kus on 

võimalik manipuleerida lambda-arvutuse termidega intuitiivsel tasemel. Samal ajal 

oleks loodud visuaalne programmeerimiskeel Turingi täielik ning võimaldaks 

määratleda loogilisi tehteid, aritmeetikat, loendeid, rekursiooni ja teisi 

konstruktsioone. Sellist keskkonda saaks kasutada lambda-arvutuse õpetamiseks, 

samuti abivahendina lambda-arvutuse uurimisel ning lastele mõeldud loogilise 

mänguna. 

Töö koosneb seitmest peatükist, mis jagunevad kolme loogilisse ossa. Esimene 

osa, peatükid 1 ja 2, on referatiivne, kus antakse ülevaade lambda-arvutuse 

põhimõistetest, tutvustatakse Martin Erwigi ideed visuaalsete 

programmeerimiskeelte abstraktsest visuaalsest süntaksist ning vaadeldakse nelja 

olemasolevat lambda-arvutuse visuaalset notatsiooni: Wayne Citrini VEX 

programmerimiskeel, Dave Keenani graafiline notatsioon, Mike Thyeri lambda-

animaator ja Bret Victori alligaatori munade mäng. Analüüsides olemasolevaid 

notatsioone selgus, et neist ükski ei rahulda kõiki soovitavaid omadusi. 

Töö teine ja ühtlasi põhiosa (peatükid 3-5) kirjeldab väljatöötatud 

notatsiooni lambda-arvutuse visualiseerimiseks ning annab ülevaate selle alusel 

realiseeritud visuaalsest programmeerimiskeskkonnast. Autori poolt väljatöötatud 

nn. mulli-notatsioon kasutab lambda-termide esitamiseks värvilisi ringe (mulle).  

Muutuja on kujutatud tühja ringina (muutuja-mull), abstraktsioon aga ringina 

(lambda-mull), mille sees on abstraktsiooni kehale vastav kujund.  Aplikatsiooni 

kujutatakse kahe teineteisele asetatuna ringina. Muutuja-mullile ja sellega seotud 

lambda-mullile omistatakse sama värv. Antud notatsioon on puhtalt visuaalne 

(ilma literaalsete märgisteta). Notatsioon võimaldab kujutada reduktsiooni pideva 

animatsiooniga: üks mull sujuvalt „neelab” teisi mulle, samal ajal ilmuvad 

neelatavate mullide koopiad vastavate seotud muutujate asemele.  

Keskkonna prototüüp on realiseeritud programmeerimiskeeles Python 

kasutades graafilist paketti PyGame, mis lubavad kergesti luua interaktiivseid 
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graafilisi programme. Keskkond koosneb põhiaknast ja konsoolist. Põhiaknas on 

hiire abil võimalik konstrueerida lambda-terme ja neid visuaalselt manipuleerida. 

Tööriistaribad lubavad käivitada reduktsioone, muuta redutseerimisstrateegiat ja 

ennistada eelnevaid olekuid. Terme on võimalik sisestada ka konsoolilt. Samuti on 

võimalik defineerida termide sünonüüme, salvestada ja laadida liidesealasid jt. 

Töö viimases osas (peatükid 6 ja 7) on raporteeritud keskonna testimisel kahe 

õppuriga saadud tulemustest ja vaadeldud keskkonna võimalike edasiarendusi. 

Õpputega eksperimenteeriti lambda-arvutuse õppimist antud keskkonna baasil. 

Kahjuks ei saa eksperimentide tulemusi väga õnnestunuteks pidada.  Mingil 

määral räägib see sellest, et keskkonna kasutajaliides ei ole piisavalt intuitiivne. 

Samas on selge, et rohkem põhjendatud järeldused vajavad edasisi uuringuid. Töös 

ongivälja pakutud ka mõningaid lahendusi, mis võimaldaks notatsiooni muuta 

natuke intuitiivsemaks ning kasutajaliidest mugavamaks.  Keskkonna projekt on 

avatud lähtekoodiga ja on kättesaadav veebist aadressil 

http://code.google.com/p/visual-lambda/.  
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Appendix 

The attached CD contains the readme.txt file and the following high-level 

directories: 

/source Visual Lambda environment source code (as of 27.05.2008). 

/compiled Visual Lambda environment compiled with py2exe extension. 

/installers Python 2.5 and PyGame 1.8 installers. 


