
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science Speciality

Viktor Massalõgin

Visual Lambda Calculus
Master thesis (20 AP)

Supervisor: Prof. Varmo Vene

Author: Viktor Massalõgin “…..“ May 2008

Supervisor: Prof. Varmo Vene “…..“ May 2008

Allowed to defense

Professor “…..“ May 2008

TARTU 2008

2

Contents

Introduction ... 3

1. Lambda calculus basics .. 4

2. Existing visualizations of lambda calculus ... 9

2.1. Programming with Visual Expressions (VEX) by Wayne Citrin 10

2.2. A Graphical Notation for the Lambda Calculus by Dave Keenan 11

2.3. Lambda Animator by Mike Thyer ... 11

2.4. Puzzle game Alligator Eggs by Bret Victor ... 13

2.5. Motivation for a new notation ... 13

3. Bubble notation ... 14

4. Interface ... 19

5. Implementation .. 22

6. Student experiments .. 26

7. Conclusion ... 27

7.1. Summary ... 27

7.2. Future work ... 27

Resümee (in Estonian) ... 30

References .. 32

Appendix ... 33

3

Introduction

The history of visual programming languages (VPL) starts in 1963 with the

Sketchpad system by Ivan Sutherland [1]. Over time VPL gained in importance in

human-computer interaction study, especially for education. This thesis doesn’t

aim to prove the importance of VPL. Just note that the main argument of such

proofs is the primacy of the perception of images over the perception of text [1],

thus a graphical representation may successfully supplement or even substitute a

textual statement.

This thesis is devoted to the development of a visual notation for lambda

calculus expressions and a VPL environment based on this notation. We believe

that lambda calculus is especially suited for visualization purposes. The simplicity

of lambda calculus allows defining simple transparent semantics for notations. It

also allows keeping notations purely graphical (meaning that no literal labeling is

needed). At the same time such a visual language (along with lambda calculus) is

powerful enough to denote Boolean operations, numbers, lists, recursion etc [2].

The main requirements for the developed notation and the visual

programming environment are an exact and clear representation of lambda

expressions and an intuitive interface for their manipulation respectively. Such an

environment may be used as a learning aid for teaching lambda calculus, as a

mental game for children or as an assistant tool for research.

This thesis is organized as follows. Section 1 introduces and reviews some

basic definitions of lambda calculus with let-expressions and lazy evaluation. This

section may be skipped by an experienced reader. Section 2 gives an overview of

four existing graphical notations for lambda calculus and describes their benefits

and drawbacks. Section 3 specifies the bubble notation proposed by the author.

This notation combines the benefits of the notations cited above. Section 4

describes the user interface of the Visual Lambda environment prototype based on

the bubble notation. Section 5 gives the main aspects of the implementation of the

environment in the Python programming language. Section 6 reports the results of

lessons with two students. The lessons consisted of an introduction to the lambda

calculus and the solving of tasks (both using the Visual Lambda environment).

Section 7 presents some conclusions and thoughts on future work. Visual Lambda

is the open source project licensed under GPLv3 license. A copy of the project

source (as of 27.05.2008) is available online and on the attached CD.

4

1. Lambda calculus basics

This section is a short and informal description of lambda calculus. For more

complete description we recommend any of the introductions to lambda calculus

such as [2] or [3].

Lambda calculus theory is tightly bound to the notion of function. Consider a

definition of a function. Traditionally we specify function arguments by the side of

a name of a function being defined. As an example, the definition of the two-

argument function LENGTH can be given as:

LENGTH(x ,y) := x2+y2

The lambda syntax allows uniting arguments with the function body. For

example,

λx y . x2+y2

defines a vector length function without being bound to any name. The following

notation

LENGTH ≡ λx y . x2+y2

denotes that LENGTH and λx y . x2+y2 are synonyms.

An important point is that every function in lambda calculus takes its

arguments one by one. As an example, consider the evaluation of the function

LENGTH:

LENGTH 5 12 ≡ (λx y . x2+y2) 5 12

(λy . 52+y2) 12

52+122 = 13

This implies that a result of an evaluation of a function application may be

another function. Thus we may define the one-argument function

DOUBLE ≡ MULT 2

where MULT is the two-argument function λx y . x ⋅ y .

A function may also take another function as an argument. For example, we

use the function λf x . f x x to define one-argument functions SQR and DOUBLE:

5

SQR ≡ (λf x . f x x) MULT

DOUBLE ≡ (λf x . f x x) PLUS

Indeed:

(λf x . f x x) PLUS

λx . PLUS x x

Now a bit more formally. The lambda expressions (or lambda terms) are

defined by the following grammar:

E ::= V | λV .E | E 1 E 2

where V is any identifier. An expression λV .E is called an abstraction and

corresponds to a function, where identifier V is an argument and E is called a

body of abstraction. An expression E 1 E 2 is called an application of argument E 2

to the function E 1 .

The following abbreviation is accepted as syntactic sugar:

λf . λx . f x x ≡ λf x . f x x

Application is left associative, that is:

 ((f x) y) z ≡ f x y z

A variable in a lambda expression can be either free or bound. A bound

variable is associated with some lambda within the expression. For example, x is

bound and f is free in λx . f x x .

It is allowed to change name of bound variables in an expression if the

renaming does not make a collision of variables. Such a renaming is called

α-conversion. For example, expressions λa . b (a c) and λd . b (d c) are equivalent.

An application F A is a redex if F is some abstraction. In this case, a

β-reduction corresponds to calling the function F with the argument A . A

β-reduction of a redex (λx . E)A involves a substitution of all occurrences of x in

E by A . α-conversions may be needed before β-reduction for avoiding collision of

variables. For example, the expression λb . (λa b . a (a b)) (λa . b a) is reduced as

follows (redexes being reduced are underlined):

6

 λb . (λa b . a (a b)) (λa . b a)

 λb . (λc d . c (c d)) (λa . b a)

 λb . λd . (λa . b a) ((λa . b a) d) …

The reduction of an expression may be continued as long as the expression

contains redexes. A normal form is an expression containing no redexes. An order

of reduction of redexes is determined by a reduction strategy. Normal order

reduction reduces the leftmost outermost (not contained in any other redex) redex

first. Applicative order reduction reduces the leftmost innermost (not containing

any other redex) redex first. Either of strategies has a weakness. Normal order

strategy may cause repeated evaluations:

 (λx . PLUS x x) (FACTORIAL 4)

 PLUS (FACTORIAL 4) (FACTORIAL 4) …

 PLUS 24 (FACTORIAL 4) …

 PLUS 24 24 …

Applicative order strategy may cause a long (or even infinite) unnecessary

evaluation:

 (λx . y) (FACTORIAL 4) …

 (λx . y) 24

 y

Lazy evaluation eliminates these weaknesses. We supplement pure lambda

calculus with a let-expression let x= A in E and redefine reduction rule as

follows:

(λx . E)A let x= A in E

It allows to not evaluate A if E does not depend on x , or to use a value of A for

all occurrences of x in E . A substitution of one occurrence of x by a value of A is

called a dereferencing. As an example, consider the following reduction:

 let x= λz . z in x x

 let x= λz . z in (λz . z) x

7

 let x= λz . z in (λz . z) (λz . z)

 (λz . z) (λz . z)

Note that a let-expression may be dropped as garbage if x no longer appears in E .

Lazy evaluation is described in more details in [3]. As an example, we consider the

reduction of the expression (λx . x x) ((λy z . y z) (λw .w)) without going into

details. Figure 1 illustrates the reduction in standard notation and in the usual

graph form.

Obviously, a core of each lambda expression is a graph structure. Each

textual notation representing lambda expressions has a weakness. For instance,

using of named variables in standard notation is redundant and causes

intermediate α-conversions. Expressions written using de Bruijn indexes [4] are

invariant with respect to α-conversion but the same bound variables may be

represented by different numbers, which makes the rules of reduction more

complicated. In the next section we describe some graphical notations for lambda

expressions and determine their benefits and drawbacks.

8

Figure 1. Lazy evaluation.

�x letx letx

letx letx letx

letx letx

letz

letz

�y �y

lety

lety lety lety

lety lety

�w �w

�w

�w �w �w

�w �w

w w

w

w w w

w w

�z �z

�z

�z �z �z

�z �z

�z

x x

x

z z

z

z z z

z z

z

z

xx x x

x x

x

x

x

x

y y

y

y y y

y y

y

y

y

y

@

@ @ @

@ @

@ @

@

@ @ @

@ @

@

@

@

@

@ @

let

in

x
x x

= ()()� �yz.z w.wy()(()())� � �x.xx yz.zy w.w let

in

x w.w

x x

= �let

in

y
z.zy
=

�

let

in let

y w.w
x z.zy
=

=
�

�
xin x

let

in let

y w.w
x z.zy
=

=
�

�
in ()x�z.zy

let

in let

let

in

y w.w
x z.yz

z x
y

=
=

=

�
�

in

z

let

in let

in

y w.w
x z.yz

x
xy

=
=

=

�
�

in let z

let

in let

y w.w
x z.yz
xy

=
=
�

�
in

� �

�deref deref

garbage

� �

�

�

��

�

assoc

�����

9

2. Existing visualizations of lambda calculus

Martin Erwig [5] proposes a general approach to visual languages. He presents a

framework based on a rather general notion of abstract visual syntax and defines

an abstract visual syntax of a visual language notation as a set of directed labeled

graphs, where nodes represent visual objects and edges represent relationships

between objects. In this section we describe four existing approaches to visualize

lambda expressions, compare them in the framework of abstract visual syntax and

note their benefits and drawbacks.

First consider the expression λf . (λx . f (x x)) (λx . f (x x)) . Figure 2 shows

its structure. We can see that there are three types of nodes (application node,

lambda node and variable node) and two types of edges such as tree edges (parent-

child) and binding edges (variable-lambda). Erwig considers such a structure as the

abstract syntax graph of a lambda calculus visual notation.

Figure 2. The structure of λf . (λx . f (x x)) (λx . f (x x)) .

There exist a lot of approaches to visualize lambda expressions. We have

chosen the following four as the most mature and interesting: VEX by Wayne

Citrin [6], a Graphical Notation by Dave Keenan [7], Lambda Animator by Mike

Thyer [8] and a puzzle game Alligator Eggs by Bret Victor [9]. Corresponding

representations of the expression above are shown in Figure 3.

�

� �

@

@ @

@ @

10

Figure 3. λf . (λx . f (x x)) (λx . f (x x)) in notations of

(a) Wayne Citrin, (b) Dave Keenan, (c) Mike Thyer and (d) Bret Victor.

2.1. Programming with Visual Expressions (VEX) by Wayne Citrin

This notation represents a variable node as an empty circle. A lambda node is

represented as a circle and in addition an internally tangent circle (a parameter of

an abstraction). An application node is represented as an arrow between two

externally tangent circles (a function circle and an argument circle). Note that the

notation does not differentiate application order (f (x x) or (f x) x). So application

arrows have to be numbered according to priority. Hence the notation is not

purely visual.

The notation uses an appropriate nested syntax (a body of abstraction is

inside a lambda circle), which allows not to encumber a representation with tree

edges. Binding edges are drawn as lines that connect a variable circle and an

abstraction parameter circle. Note also that the notation provides a representation

1 12 2

name @ need

name @ need name @ need

name @ need name @ need

\1

\2 \2

_1_1

_2 _2 _2 _2

(a)

(c)

(b)

(d)

11

of let-expressions. For example the expression λ f . let y= λ x . f (x x) in y y is

drawn as

2.2. A Graphical Notation for the Lambda Calculus by Dave Keenan

This purely visual notation also uses a nested syntax. However tree edges of

application are mixed up with binding edges, which rather encumbers the

representation. The most important advantage of this notation is that it allows for

smooth animations representing the reduction of an expression. The smoothly

animated reduction allows easier following the transformation of an expression.

Figure 4 shows the reduction

(λ x y . x) (λ z . z) λ y z . z

Regrettably, this notation does not provide a representation of let-

expressions.

2.3. Lambda Animator by Mike Thyer

The Lambda Animator represents the expressions in tree form. So the tree edges

are drawn. Binding edges are represented by numbering the lambda and variable

nodes. The notation very nearly reproduces the traditional tree notation of lambda

expressions. Only this notation is implemented (in Java) and available online [8],

which is the main advantage. The notation also provides a representation of let-

expressions. Unfortunately, the “animation” of β-reductions is not smooth and

thus it is not easy to follow the transformations.

12

12

Figure 4. Smoothly animated reduction by Dave Keenan.

K

K

I

I

I

I

I

I

I

KI

KI

13

2.4. Puzzle game Alligator Eggs by Bret Victor

This is a paper game, which is designed for children. A hungry (colored) alligator

represents a lambda node, an egg represents a variable node and an application

node is represented as two alligator families next to each other. Old (white)

alligators stand for parenthesis and determine the order of applications. This

notation allows rather concise representations, which are suited to children.

Expressions are represented in tree form but tree edges are not drawn. The

felicitous feature of this notation is the using of color: a binding is represented as

the same colored egg and alligator, which avoids unnecessary lines and simplifies a

representation. β-reduction is denoted by eating and hatching out. Let-expressions

are not provided.

2.5. Motivation for a new notation

We saw that none of the considered notations combines all of the advantages

determined above (such as the providing of let-expressions, smooth animated

reductions, nested and colored syntax etc). It motivated us to develop the bubble

notation, which is specified in the next section. As an example, Figure 5 shows the

same expression λf . (λx . f (x x)) (λx . f (x x)) in the bubble notation.

Figure 5. λf . (λx . f (x x)) (λx . f (x x)) in the bubble notation.

14

3. Bubble notation

The implemented programming environment Visual Lambda uses the bubble

notation for representation of expressions and reductions of lambda calculus. In

this section we describe the basic rules of the notation.

The bubble notation represents λ-expressions as two-dimensional structures

of rings. These rings are called bubbles. Each bubble has a specific color. Bubbles

may be grouped together. A bubble may have a group of bubbles inside.

Each bubble represents a variable or an abstraction. So we have two types of

bubbles: variable bubble and lambda bubble. A variable is represented as an empty

bubble. A lambda bubble λ a of an abstraction λ a . E has the bubbles inside,

which represent E . Each bubble of variable a in E has the same color as the

corresponding lambda bubble. Variable bubbles associated with different lambdas

always have different colors. Bubbles of free variables are white. So the expressions

λ x y . x and λ x y . y are drawn as

An application is represented as partial overlapping bubbles. The bubble of

function is over the bubble of argument. The expressions f x and λ x . x x are

represented as

Figure 6 illustrates composition of applications.

λx λy x λx λy y

f x λx x x

15

f (g x) (f x) y f (g x) y (t x z)

Figure 6. Composition of applications.

The following figure illustrates the expression

(λ mn f x . n f (mf x)) (λ f x . f (f x)) (λ f x . f (f (f x))) ≡ PLUS 2 3

Note that colors of the bubbles in a closed expression (an expression without

free variables) have the same hue. It makes the recognition of a structure of an

expression easier.

The bubble notation also allows representing let-expressions. Consider an

expression let x= E ’ in E , where the let-bound variable x appears in E several

times. Then all occurrences of x in E are represented by the same colored

duplicates of the representation of E ’ . So the expression

f g x f

x

y
f

g

y

t
x

z

x

16

λf x . let h = λg . g (g f) in h (h x)

is drawn as

The copy of λg . g (g f) changes its color after dereferencing. So that the

expression

λf x . let h = λg . g (g f) in (λg . g (g f)) (h x)

is drawn as

Further extensions of the bubble notation concern animation and interaction.

So a β-reduction of a λ-expression is shown as a continuous animation. It allows

easier following a modification of the expression. Consider a β-reduction of the

redex (λ x . E)E ’ . We shall use the metaphor of eating. Eating act includes three

phases: (1) the eaten bubbles (the bubbles of E ’) are moving under the eating

bubble (the bubble λ x) so that the eating bubble covers them, at the same time

the copies of the eaten bubbles are appearing inside the bubbles of the lambda-

bound variables (the bubbles x within E); (2) hiding of the eating bubble λ x and

the associated bubbles x (their transparency grows to 100%); (3) rearranging of

17

remained bubbles according to resulting expression. Figure 7 shows phases of the

reduction of the expression

λf . (λg x . g (g x)) (λh y . h (h y)) f .

Figure 7. Eating act.

It should be noted that a part of the nearest eaten bubble is seen inside the

lambda-bound variable bubbles even before the eating. It signifies that the eating

is possible:

18

A selection of a sub-expression occurs by a simplest interaction: mouse

picking results in the red highlighting of some bubbles. A highlighted bubble

corresponds to selection of a variable or an abstraction. Multiple bubble

highlighting corresponds to selection of an application.

Now note that if we select some sub-expression within the let-bound variable

bubble y then the bubbles of the same sub-expressions within other let-bound

variable bubbles y get orange highlighting. The expression

λ f . let y= λ x . f (x x) in y y

is drawn below. The application x x within the second let-bound variable y is

selected.

The orange highlighting also allows distinguishing the expressions

λ x . let y= x x in y y and λ x . x x (x x) :

4. I

The

Figu

of la

the

Thre

click

click

selec

part

click

a sub

desc

Interface

 Visual La

ure 8 shows

ambda expr

 figures by

ee toolbars

Figures a

ked figure

ked figure

cted sub-ex

 of some

k allows sel

b-expressio

The righ

ribes the b

e

ambda env

s the envir

ressions. T

y mouse an

s (left, righ

Fi

are movab

 is brough

 and a sele

xpression a

 application

lection of a

on.

ht toolbar

buttons of t

vironment

ronment. C

The worksp

nd hotkeys

ht and bott

igure 8. Vi

ble with m

t to front

cted sub-e

are highlig

n, then th

a clicked bu

 provides b

 the toolbar

19

 contains

Console is p

pace window

s. Each fig

tom) are av

isual Lamb

mouse. Mo

 and gets

expression

hted with

he whole a

ubble only

buttons fo

r and corre

 a workspa

 provided fo

w allows c

gure repre

vailable.

bda envirom

ouse whee

 selection.

 are shown

 red. If a c

application

y. The spac

or construc

esponding

ace window

for textual

creation an

esents a la

ment.

l zooms t

 An expre

n in consol

clicked bub

 gets selec

ce key expa

ction of a

 keyboard s

w and a

 output an

nd manipul

ambda exp

the worksp

ession of a

e. The bub

bble is a f

ction. A r

ands a sele

a figure. F

 shortcuts.

console.

nd input

ation of

pression.

pace. A

a whole

bbles of

function

repeated

ection of

Figure 9

20

Quick reduction mode Q

Add a new figure (free variable) V

Insert an application before the selected bubbles A, Insert

Insert an application after the selected bubbles Ctrl+A, Ctrl+Insert

Insert a lambda bubble L, Alt+Insert

Delete the selected bubbles Delete

Delete the selected figure D

Duplicate the selected figure C

Figure 9. Right toolbar.

Right-click on a bubble tries to bind a clicked variable/lambda bubble with a

selected lambda/variable bubble.

Dropping a figure to another figure produces an application. More properly,

dropping a figure A to a sub-expression B of another figure substitutes B for an

application A B . The bubbles of sub-expression B are highlighted with dark red

before dropping.

The Input item command on the left toolbar requests for an expression in

console and creates a corresponding figure. An exemplary input is

let a=2 in MULT a a

All the accepted synonyms of lambda expressions are defined in Figure 10. It

is possible to add synonyms to the file library.txt in the working directory.

The Play button from the bottom toolbar (or the Enter key) performs a

reduction step of a selected figure. A reduction step contains a visible reduction (a

β-reduction or a dereferencing) and invisible reductions of let-expressions when

required (arranging and garbage collection). Ctrl+Enter starts a nonstop

reduction. Undo and Redo buttons (Ctrl+Z and Ctrl+Y) allow returning a figure

to one of the previous states.

21

Combinators

I ≡ λx . x
K ≡ λx y . x
S ≡ λx y z . x z (y z)
W ≡ λx . x x
Y ≡ λf . (λx . f (x x)) (λx . f (x x))
OO ≡ (λx y . y (x x y)) (λx y . y (x x y))

Logic

T ≡ λx y . x
F ≡ λx y . y
NOT ≡ λp . p F T
AND ≡ λp q . p q F
OR ≡ λp q . p Tq
COND ≡ λp x y . p x y

Pairs

FST ≡ λp . p T
SND ≡ λp . p F
PAIR ≡ , ≡ λa b f . f a b

Arithmetic

ISZERO ≡ λn . n (λx . F) T
SUCC ≡ λn f x . f (n f x)
PLUS ≡ + ≡ λmn f x . n f (m f x)
MULT ≡ * ≡ λmn f .m (n f)
POW ≡ λmn . nm
PRED ≡ λn f x . n (λg h . h (g f)) (λu . x) I

FACT ≡ Y(λf n . (ISZEROn) 1

 (MULT(f (PREDn))n))

0 ≡ λf x . x
1 ≡ λf x . f x
2 ≡ λf x . f (f x)
3 ≡ λf x . f (f (f x))
etc

Lists

NIL ≡ λz . z
CONS ≡ : ≡ λx y . PAIR F (PAIRx y)
NULL ≡ λz . z T
HEAD ≡ λz . FST (SNDz)
TAIL ≡ λz . SND (SNDz)

Figure 10. Accepted synonyms for expression input.

The left toolbar shows a current reduction mode, such as a reduction strategy

(normal or applicative), a calculus mode (pure or lazy lambda calculus) and the

bounds of reduction (within a selection only or the whole figure). The quick

reduction mode (the finger cursor) allows selection and then reduction within

selection by a single click.

Besides figures, a workspace may contain text labels. Input item command

adds a text label if the inputted text is quoted.

A workspace may be saved and loaded from an XML file (Ctrl+S, Ctrl+O).

The name of the file is requested in console.

Some basic options of the environment (such as speed of eating, default

workspace or the size of text) may be changed in configuration file config.cfg.

22

5. Implementation

The prototype of Visual Lambda environment is written in the Python

programming language (version 2.5) [10] using the PyGame library (version 1.8)

[11]. Python allows easy writing, reading and rewriting code. PyGame is the most

commonly used Python library for creating interactive graphics programs. Next we

describe the main modules and classes of the environment program.

Manipulation of lambda expressions is realized in module let.py. Modules

let.py, library.py and lambdaparser.py may be used as a console evaluator of

lambda expressions. The Library class allows defining the synonyms. The Parser

class admits of parsing lambda expressions including let-expressions and synonyms,

for example ‘let a=2 in MULT a a’. Module let.py allows step-by-step reduction of

an expression according to selected reduction strategy. This module contains

classes Variable, Abstraction, Let, Application and the base class Expression,

which implement corresponding constructions of lambda expressions. Neither the

variable nor the abstraction class contain a string attribute for an identifier. The

module refnames.py is used for representing the identifiers. This module keeps a

dictionary {Abstraction: identifier}. If we need to represent some new bound

variable, a new pair (Abstraction: identifier) is added into the dictionary.

Identifiers are added in order 'a','b',..'z','aa','ab',..

The rest of modules realize the graphical representation and the interface of

the environment. We use the class Bubble, which specifies a bubble size and

position. Thus we attach a Bubble object to each Variable and Abstraction object.

Each variable or abstraction node may correspond to more than one bubble if this

node is reached through some let-bound variable. Therefore each node has a

dictionary {key: Bubble}, where key is a tuple (var1,var2,var3,..) of involved let-

bound Variable objects. We use an object of class Noke, which contains a pair

(Node, key), as a pointer to some bubble of a figure. Figure 11 shows the tree and

the figure of the expression λ a . let b= λ c . a (c c) in b b . One of the bubbles c is

selected.

23

Figure 11. Noke pointer to a bubble.

Figure 12. A sequence of transformation matrices.

b(1) b(2)

c(1)

c(1)

c(2)

c(2)

APPL APPL

APPL

ABS

ABSLET

VAR

VAR

VAR

VAR VAR

selected
Noke(,())c b(2) (1)

selected
Noke(,())c b(2) (1)

APPL

APPL

VARVAR

VAR

ABS

APPL

APPL

ABS

ABS

VAR

VAR

VAR

Workspace view

Matrices

Figure position on field

Contract (into -bubble)�

Contract (into -bubble)�

Bounding ring of group

Bounding ring of group

Bubble position in group

Bubble position in group

24

In case of a variable or an abstraction takes part in some application then the

corresponding Bubble object refers to a Group object. Each group of bubbles is

built in own space and has a bounding ring as an attribute. The groups are nested

by transformation matrices. Figure 12 shows the figure and the tree of the

expression λ a . a (λ b . b b) and the corresponding sequence of transformations used

in drawing the variable bubble b .

The radiuses of bubbles in each group are determined iteratively. Each

iteration step makes a correction of a bubble radius if the neighbor bubbles do not

fit around it. Figure 13 shows a step of building a group a a (a a a a a). The radius

of the middle bubble has been enlarged.

Figure 13. A step of iterative building a group.

Each Figure object has a position on a workspace. A Figure object also keeps

a history of an expression (copies of previous expressions without Bubbles) and a

ColorSpace object. Similarly to the module refnames.py, a ColorSpace object

associates each abstraction node of the figure with a representation color. The class

ColorSpace uses the HSV color model [12] for grouping colors by hue (colors of

bubbles in closed expressions differ in lightness only). Note that the function

log2(2n+1) is used to determine a hue value for a new group. This function allows

quite uniform distribution of any number of groups in color space. Figure 14 shows

an arrangement of nine groups in color space. The same function is used for

determining a lightness value for a new bubble within a group.

(λa

draw

the

acco

matr

Finally w

. E)A are

wing uses a

 bubbles o

rding to

rices) occu

F

we describe

e drawn as

a blitting b

f Α until

 reduction

rs at the s

Figure 14.

 how the “

s holes, thr

by a circula

 they are

 (redistrib

econd phas

2

5

1

25

 Grouping

“eating” w

rough whic

ar mask. T

 fully seen

buting th

se.

2

6

 colors by h

works. The

ch the bub

The first ph

n in the h

e bubble

4

3

7

 hue.

 variable b

bbles of A

hase of “ea

holes. Rebu

 groups,

0

8

7

bubbles a i

 are seen.

ating” is a

uilding the

recalculati

in redex

 A hole

 moving

e figure

ion the

26

6. Student experiments

We have tested the Visual Lambda environment prototype in some experiments

with students. The aim of the experiments was to explore the possibilities of the

environment and the bubble notation.

For the first experiment we have chosen a 14-year-old student. The

experiment lasted one hour with a short break. First the notions of functional and

imperative programming languages and their applications were given for

motivation. Lambda calculus was introduced as the basis for functional

programming. Further the bubble notation rules were explained. The following

terms were using: a bubble, a figure, an eating bubble, a bearing bubble, eaten

bubbles, an eating act etc. The standard lambda notation was not mentioned.

Then the basic figures (such as λa . a , λa b . a , λa b . b etc) and their

combinations were considered. The figures λa b . a , λa b . b were associated with

the True and False values. The operator Not was also considered. At the same

time the interface of the environment was explained and some tasks were given,

such as to predict a result of some eating, or to construct a copy of some given

figure.

There was a task to construct such a figure X that XA A (AA) for each

A . The student found the answer X ≡ λa . a (a a) quickly. Then a figure

λa . aAB was associated with a pair of A and B . A task to construct such a

figure X that (λa . aAB)X A was given. The student was able to find the

answer X ≡ λa b . a . However, the task to solve X (λa . aAB) A turned out

to be too hard (X ≡ λp . p (λa b . a)).

For the second experiment we have chosen a graduated in informatics

student. The result was also not delightful. The student was able to solve the task

X (λa . aA B) A , but the task X (λa . aAB) λa . aBA was too difficult.

It is clear that the two experiments are not enough for a valid final

conclusion. However it shows that the interface of the environment is not intuitive

enough and may prevent from directing attention to a task. Further experiments

are needed before conclusions about the bubble notation can be drawn. For

example, an experiment in a lecture on lambda calculus might compare conceiving

of lambda calculus using the bubble notation and in the usual way. Experiments

with modifications of the bubble notation might discover a better variant of the

notation.

27

7. Conclusion

7.1. Summary

This work aimed to develop a visual notation, which represents lambda expressions

as clearly as possible, and to implement a visual programming language

environment based on this notation, which allows intuitive manipulation of lambda

expressions.

Four existing approaches to visualize lambda expressions have been

considered during development of the notation. The following features of the

considered notations have been accepted as advantageous: (1) nested syntax

(which allows representing the tree structures omitting tree edges); (2) using of

color (allows representing the bindings without using identifiers, numbers or

edges); (3) smoothly animated reductions (helps to follow transformations of

expressions); (4) possibility to represent let-expressions and (5) a notation should

be easily implementable. The bubble notation proposed by the author combines

the features above.

The implemented Visual Lambda environment prototype allows for the

construction and manipulation of figures, which represent lambda expressions. The

environment has a graphical interface combined with a console. The mouse allows

zooming, dragging figures, dropping one figure to another (producing an

application), picking a redex for reduction etc. The toolbars allows construction of

figures, reducing, returning figures to previous states, changing a reduction

strategy, saving and loading workspaces etc. The environment was tested in

experiments with students. The experiments had showed that the environment

interface is not intuitive enough and needs to be improved.

The Visual Lambda is an open source project and is available under the

GPLv3 license [13] for all interested in lambda calculus at address

http://code.google.com/p/visual-lambda/. A copy of the project sources (as of

27.05.2008) is also available on the attached CD.

7.2. Future work

The Visual Lambda environment permits considerable further improvement and

modifications. Let us note some potential features.

Smoother construction and manipulation of figures might make it easier to

follow transformations. In particular, one could implement smooth transformations

28

for the undo and redo commands, the smooth appending and removing of bubbles

to a figure and the smooth changing of colors by dereferencing.

The possibility to substitute some bubble figures for other objects in the

manner of synonyms might simplify some compound figures. As an example,

Figure 15.a shows a possible representation of the expression

FACT 3 ≡ Y(λf n . (ISZEROn) 1(MULT(f (PREDn))n)) 3

It also may motivate to solve the task X (λa . aA B) A described in the

previous section if we substitute A and B for some images (Figure 15.b).

Figure 15. Synonyms in bubble notation.

Following potential features concern the bubble notation. One of the main

drawbacks is that the notation does not differentiate free variables (all of them are

represented as white bubbles). A more correct notation, for example, might assign

different whitish colors to different free variables.

A more proper notation of let-expressions has emerged during writing this

thesis. The notation may be implemented in the future and is described below.

Each let expression let x= A in E is represented in the same way as a redex

(λx . E)A . Then a dereferencing is represented as a kind of threading. For

example the dereferencing let x= λa . a in x x let x= λa . a in (λa . a) x is

represented as:

(a) (b)

29

An advantage of this notation is that other reduction rules, such as assoc, lift

and garbage [3], become visible. Figure 16 shows the corresponding representations.

let x= let y= M in A in E let y= M in let x= A in E

(let x= M in A)N let x= M in AN

 let x= M in A A if x is not free variable of A

Figure 16. Representations of reductions in the alternative notation.

M M MA A A

y
y y

E E E

x x x

A

x
M

N
A A

x x
M

M
N

N

A A A

x x

M M

30

Visuaalne lambda arvutus

Magistritöö (20 AP)

Viktor Massalõgin

Resümee

Töö eesmärgiks oli disainida visuaalne esitus lambda-arvutusele ja selle alusel

realiseerida visuaalse programmeerimiskeele keskkond. Põhieelduseks oli, et

lambda-arvutuse reeglite lihtsus lubab arendada visuaalse keskkonna, kus on

võimalik manipuleerida lambda-arvutuse termidega intuitiivsel tasemel. Samal ajal

oleks loodud visuaalne programmeerimiskeel Turingi täielik ning võimaldaks

määratleda loogilisi tehteid, aritmeetikat, loendeid, rekursiooni ja teisi

konstruktsioone. Sellist keskkonda saaks kasutada lambda-arvutuse õpetamiseks,

samuti abivahendina lambda-arvutuse uurimisel ning lastele mõeldud loogilise

mänguna.

Töö koosneb seitmest peatükist, mis jagunevad kolme loogilisse ossa. Esimene

osa, peatükid 1 ja 2, on referatiivne, kus antakse ülevaade lambda-arvutuse

põhimõistetest, tutvustatakse Martin Erwigi ideed visuaalsete

programmeerimiskeelte abstraktsest visuaalsest süntaksist ning vaadeldakse nelja

olemasolevat lambda-arvutuse visuaalset notatsiooni: Wayne Citrini VEX

programmerimiskeel, Dave Keenani graafiline notatsioon, Mike Thyeri lambda-

animaator ja Bret Victori alligaatori munade mäng. Analüüsides olemasolevaid

notatsioone selgus, et neist ükski ei rahulda kõiki soovitavaid omadusi.

Töö teine ja ühtlasi põhiosa (peatükid 3-5) kirjeldab väljatöötatud

notatsiooni lambda-arvutuse visualiseerimiseks ning annab ülevaate selle alusel

realiseeritud visuaalsest programmeerimiskeskkonnast. Autori poolt väljatöötatud

nn. mulli-notatsioon kasutab lambda-termide esitamiseks värvilisi ringe (mulle).

Muutuja on kujutatud tühja ringina (muutuja-mull), abstraktsioon aga ringina

(lambda-mull), mille sees on abstraktsiooni kehale vastav kujund. Aplikatsiooni

kujutatakse kahe teineteisele asetatuna ringina. Muutuja-mullile ja sellega seotud

lambda-mullile omistatakse sama värv. Antud notatsioon on puhtalt visuaalne

(ilma literaalsete märgisteta). Notatsioon võimaldab kujutada reduktsiooni pideva

animatsiooniga: üks mull sujuvalt „neelab” teisi mulle, samal ajal ilmuvad

neelatavate mullide koopiad vastavate seotud muutujate asemele.

Keskkonna prototüüp on realiseeritud programmeerimiskeeles Python

kasutades graafilist paketti PyGame, mis lubavad kergesti luua interaktiivseid

31

graafilisi programme. Keskkond koosneb põhiaknast ja konsoolist. Põhiaknas on

hiire abil võimalik konstrueerida lambda-terme ja neid visuaalselt manipuleerida.

Tööriistaribad lubavad käivitada reduktsioone, muuta redutseerimisstrateegiat ja

ennistada eelnevaid olekuid. Terme on võimalik sisestada ka konsoolilt. Samuti on

võimalik defineerida termide sünonüüme, salvestada ja laadida liidesealasid jt.

Töö viimases osas (peatükid 6 ja 7) on raporteeritud keskonna testimisel kahe

õppuriga saadud tulemustest ja vaadeldud keskkonna võimalike edasiarendusi.

Õpputega eksperimenteeriti lambda-arvutuse õppimist antud keskkonna baasil.

Kahjuks ei saa eksperimentide tulemusi väga õnnestunuteks pidada. Mingil

määral räägib see sellest, et keskkonna kasutajaliides ei ole piisavalt intuitiivne.

Samas on selge, et rohkem põhjendatud järeldused vajavad edasisi uuringuid. Töös

ongivälja pakutud ka mõningaid lahendusi, mis võimaldaks notatsiooni muuta

natuke intuitiivsemaks ning kasutajaliidest mugavamaks. Keskkonna projekt on

avatud lähtekoodiga ja on kättesaadav veebist aadressil

http://code.google.com/p/visual-lambda/.

32

References

[1] Marat Boshernitsan, Michael S. Downes. Visual Programming Languages: A

Survey. EECS Department, University of California, Berkeley. Technical

Report No. UCB/CSD-04-1368. December 2004.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2004/CSD-04-1368.pdf

(27.05.2008).

[2] Raúl Rojas. A Tutorial Introduction to the Lambda Calculus. FU Berlin,

WS-96/98.

[3] Zena M. Ariola, Matthias Felleisen. The Call-By-Need lambda Calculus.

Journal of Functional Programming, Vol. 7, Issue 3, 1997, pp 265-301.

(doi:10.1017/S0956796897002724).

[4] De Bruijn index.

http://en.wikipedia.org/wiki/De_Bruijn_index (27.05.2008).

[5] Martin Erwig. Abstract Syntax and Semantics of Visual Languages. Journal

of Visual Languages and Computing, Vol. 9, Issue 5, October 1998, pp 461-

483. (doi:10.1006/jvlc.1998.0098).

[6] Wayne Citrin, Richard Hall, Benjamin Zorn. Programming with visual

expressions. Proceedings of the 11th International IEEE Symposium on

Visual Languages, 1995, pp 294-301 (doi:10.1109/VL.1995.520822).

[7] David C Keenan. To Dissect a Mockingbird: A Graphical Notation for the

Lambda Calculus with Animated Reduction, 2001.

http://users.bigpond.net.au/d.keenan/Lambda/ (27.05.2008).

[8] Mike Thyer. Lambda Animator.

http://thyer.name/lambda-animator/ (27.05.2008).

[9] Bret Victor. Alligator Eggs! A puzzle game.

http://worrydream.com/AlligatorEggs/ (27.05.2008).

[10] Python Programming Language.

http://www.python.org/ (27.05.2008).

[11] Pygame - Python game development.

http://www.pygame.org/ (27.05.2008).

[12] HSL and HSV. http://en.wikipedia.org/wiki/HSL_and_HSV (27.05.2008).

[13] The GNU General Public License.

http://www.gnu.org/licenses/gpl.html (27.05.2008).

33

Appendix

The attached CD contains the readme.txt file and the following high-level

directories:

/source Visual Lambda environment source code (as of 27.05.2008).

/compiled Visual Lambda environment compiled with py2exe extension.

/installers Python 2.5 and PyGame 1.8 installers.

